

(Approved by AICTE, & Affiliated to JNTUK, A.P.) KESANUPALLI (V), NARASARAOPETA-522549, AP

www.eswarcollegeofengg.org, email:eswarcollegeofengg@gmail.com

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING Course Outcomes

Year/Sem: II B.Tech I SEM A.Y:2022-2023

COURSE NAME: MATHEMATICS-IV		
COURSE (COURSE CODE: EE2101	
EE2101.1	Apply Cauchy-Riemann equations to complex functions in order to determine	
	whether a given continuous function is analytic (13).	
EE2101.2	Find the differentiation and integration of complex functions used in	
	engineering problems (15).	
EE2101.3	Make use of the cauchy residue theorem to evaluate certain integrals (13).	
EE2101.4	Apply discrete and continuous probability distributions (13).	
EE2101.5	Design the components of a classical hypothesis test (16).	
EE2101.6	Infer the statistical inferential methods based on small and large sampling	
	tests (14).	

COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS		
COURSE O	COURSE CODE: EE2102	
EE2102.1	Understand the basic concepts of semiconductor physics.	
EE2102.2	Understand the formation of p-n junction and how it can be used as a p-n	
	junction as diode in different modes of operation.	
EE2102.3	Know the construction, working principle of rectifiers with and without filters	
	with relevant expressions and necessary comparisons.	
EE2102.4	Understand the construction, principle of operation of transistors, bjt and fet	
	with their v-i characteristics in different configurations.	
EE2102.5	Know the need of transistor biasing, various biasing techniques for bjt and fet	
	and stabilization concepts with necessary expressions.	
EE2102.6	Perform the analysis of small signal low frequency transistor amplifier	
	circuits using bjt and fet in different configurations.	

COURSE NAME: ELECTRICAL CIRCUIT ANALYSIS - II	
COURSE CODE: EE2103	
EE2103.1	Understand the concepts of balanced and three-phase circuits.
EE2103.2	Know the transient behavior of electrical networks with dc excitations.
EE2103.3	Learn the transient behavior of electrical networks with ac excitations.
EE2103.4	Estimate various parameters of a two port network.
EE2103.5	Understand the significance of filters in electrical networks.
EE2103.6	Understand the concepts of unbalanced three-phase circuits.

(Approved by AICTE, & Affiliated to JNTUK, A.P.) KESANUPALLI (V), NARASARAOPETA-522549, AP

COURSE NAME: DC MACHINES AND TRANSFORMERS		
COURSE (COURSE CODE: EE2104	
EE2104.1	Assimilate the concepts of electromechanical energy conversion.	
EE2104.2	Mitigate the ill-effects of armature reaction and improve commutation in dc	
	machines.	
EE2104.3	Understand the torque production mechanism and control the speed of dc	
	motors.	
EE2104.4	Analyze the performance of single phase transformers.	
EE2104.5	Predetermine regulation, losses and efficiency of single phase transformers.	
EE2104.6	Parallel transformers, control voltages with tap changing methods and achieve	
	three-phase to two-phase transformation.	

COURSE NAME: ELECTRO MAGNETIC FIELDS		
COURSE (COURSE CODE: EE2105	
EE2105.1	Compute electric fields and potentials using gauss law.	
EE2105.2	Calculate the capacitance and energy stored in dielectrics.	
EE2105.3	Calculate the magnetic field intensity due to current carrying conductor and understanding the application of ampere's law, maxwell's second and third law.	
EE2105.4	Estimate self and mutual inductances and the energy stored in the magnetic field.	
EE2105.5	Understand the concepts of displacement current and poynting theorem and poynting vector.	
EE2105.6	Solve Laplace's or Poisson's equations for various electric charge distributions.	

COURSE NAME: ELECTRICAL CIRCUITS LAB	
COURSE CODE: EE21L1	
EE21L1.1	Apply various theorems.
EE21L1.2	Determination of self and mutual inductances.
EE21L1.3	Two port parameters of a given electric circuits.
EE21L1.4	Draw locus diagrams.
EE21L1.5	Draw waveforms and phasor diagrams for leading networks.
EE21L1.6	Draw waveforms and phasor diagrams for lagging.

(Approved by AICTE, & Affiliated to JNTUK, A.P.) KESANUPALLI (V), NARASARAOPETA-522549, AP

COURSE NAME: DC MACHINES AND TRANSFORMERS LAB		
COURSE (COURSE CODE: EE21L2	
EE21L2.1	Determine and predetermine the performance of dc machines.	
EE21L2.2	Determine and predetermine the performance of transformers.	
EE21L2.3	Control the speed of dc motor.	
EE21L2.4	Obtain three phase to two phase transformation	
EE21L2.5	To predetermine the efficiency and regulation of transformers and assess their	
	performance.	
EE21L2.6	To plot the magnetizing characteristics of dc shunt generator and understand	
	the mechanism of self-excitation.	

COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS LAB		
COURSE (COURSE CODE: EE21L3	
EE21L3.1	Analyze the characteristics of diodes, transistors and other devices.	
EE21L3.2	Design and implement the rectifier circuits, scr and ujt in the hardware circuits.	
EE21L3.3	Design and implement the scr.	
EE21L3.4	Design and implement the ujt in the hardware.	
EE21L3.5	Design the biasing and amplifiers of bjt and fet amplifiers.	
EE21L3.6	Measure electrical quantities using cro in the experimentation.	

COURSE NAME: PYTHON PROGRAMMING		
COURSE (COURSE CODE: EE2201	
EE2201.1	Develop essential programming skills in computer programming concepts	
	like data types.	
EE2201.2	Apply the basics of programming in the python language.	
EE2201.3	Solve coding tasks related conditional execution, loops.	
EE2201.4	Solve coding tasks related to the fundamental notions used in object- oriented	
	programming.	
EE2201.5	Solve coding tasks related to the fundamental techniques used in object-	
	oriented programming.	
EE2201.6	Develop essential programming skills in computer programming concepts	
	like containers.	

(Approved by AICTE, & Affiliated to JNTUK, A.P.) KESANUPALLI (V), NARASARAOPETA-522549, AP

COURSE NAME: DIGITAL ELECTRONICS	
COURSE CODE: EE2202	
EE2202.1	Classify different number systems and apply to generate various codes.
EE2202.2	Use the concept of boolean algebra in minimization of switching functions.
EE2202.3	Design different types of combinational logic circuits.
EE2202.4	Apply knowledge of flip-flops in designing of registers and counters.
EE2202.5	The operation and design methodology for synchronous.
EE2202.6	Sequential circuits and algorithmic state machines.

COURSE NAME: POWER SYSTEMS - I	
COURSE CODE:EE2203	
EE2203.1	Identify the different components of thermal power plants.
EE2203.2	Identify the different components of nuclear power plants.
EE2203.3	Identify the different components of air insulated substations.
EE2203.4	Identify the different components of gas insulated substations.
EE2203.5	Identify single core and three core cables with different insulating materials.
EE2203.6	Analyse the different economic factors of power generation and tariffs.

COURSE NAME: INDUCTION AND SYNCHRONOUS MACHINES		
COURSE (COURSE CODE:EE2204	
EE2204.1	Explain the operation and performance of three phase induction motor.	
EE2204.2	Analyze the torque-speed relation, performance of induction motor and	
	induction generator.	
EE2204.3	Implement the starting of single phase induction motors.	
EE2204.4	Develop winding design and predetermine the regulation of synchronous	
	generators.	
EE2204.5	Explain hunting phenomenon, implement methods of staring and correction	
	of power factor.	
EE2204.6	Explain hunting phenomenon, implement methods of staring and correction	
	of power factor with synchronous motor.	

COURSE NAME: MANAGERIAL ECONOMICS & FINANCIAL ANALYSIS		
COURSE (COURSE CODE: EE2205	
EE2205.1	The learner is equipped with the knowledge of estimating the demand and	
	demand elasticities for a product.	
EE2205.2	The knowledge of understanding of the input-output-cost relationships and	
	estimation of the least cost combination of inputs.	
EE2205.3	The pupil is also ready to understand the nature of different markets and price	
	output determination under various market conditions.	
EE2205.4	The pupil is also ready to understand the nature of different markets and price	
	output determination under to have the knowledge of different business units.	

(Approved by AICTE, & Affiliated to JNTUK, A.P.) KESANUPALLI (V), NARASARAOPETA-522549, AP

www.eswarcollegeofengg.org, email:eswarcollegeofengg@gmail.com

EE2205.5	The learner is able to prepare financial statements and the usage of various
	accounting tools for analysis.
EE2205.6	The learner can able to evaluate various investment project proposals with the
	help of capital budgeting techniques for decision making.

COURSE NAME: PYTHON PROGRAMMING LAB	
COURSE CODE: EE22L1	
EE22L1.1	Write, test and debug python programs
EE22L1.2	Use conditionals for python programs
EE22L1.3	Use loops for python programs
EE22L1.4	Use functions and represent compound data using lists.
EE22L1.5	Use functions and represent compound data using tuples.
EE22L1.5	Dictionaries use various applications using python.

COURSE NAME: INDUCTION AND SYNCHRONOUS MACHINES LAB		
COURSE (COURSE CODE: EE22L2	
E22L2.1	Assess the performance of single phase and three phase induction motors.	
E22L2.2	Control the speed of three phase induction motor.	
E22L2.3	Predetermine the regulation of three–phase alternator by various methods.	
E22L2.4	Find the xd/xq ratio of alternator and asses the performance of three–phase	
	synchronous motor.	
E22L2.5	Determine the performance of single phase ac series motor.	
E22L2.6	Control the speed of two phase induction motor	

COURSE NAME: DIGITAL ELECTRONICS LAB	
COURSE CODE: EE22L3	
EE22L3.1	Learn the basics of gates, filp-flops and counters.
EE22L3.2	Construct basic combinational circuits and verify their functionalities.
EE22L3.3	Apply the design procedures to design basic sequential circuits.
EE22L3.4	To understand the basic digital circuits and to verify their operation.
EE22L3.5	Apply Boolean laws to simplify the digital circuits.
EE22L3.6	Apply the design

III YEAR-1 SEM

COURSE NAME: POWER SYSTEMS-II	
COURSE CODE: EE3101	
EE3101.1	Calculate parameters of transmission lines for different circuit configurations.
EE3101.2	Determine the performance of short, medium and long transmission lines.
EE3101.3	Analyse the effect of travelling waves .
EE3101.4	Analyse the effect of transmission lines.
EE3101.5	Analyse the various voltage control methods and effect of corona.
EE3101.6	Calculate sag/tension of transmission lines and performance of line insulators.

(Approved by AICTE, & Affiliated to JNTUK, A.P.) KESANUPALLI (V), NARASARAOPETA-522549, AP

COURSE NAME: POWER ELECTRONICS		
COURSE (COURSE CODE: EE3102	
EE3102.1	Illustrate the static and dynamic characteristics of scr, power-mosfet and	
	power-igbt.	
EE3102.2	Analyse the operation of phase-controlled rectifiers.	
EE3102.3	Analyse the operation of three-phase full—wave converters.	
EE3102.4	Analyse the operation of ac voltage controllers and cycloconverters.	
EE3102.5	Examine the operation and design of different types of dc-dc converters.	
EE3102.6	Analyse the operation of pwm inverters for voltage control and harmonic	
	mitigation.	

COURSE NAME: CONTROL SYSTEMS		
COURSE (COURSE CODE: EE3103	
EE3103.1	Derive the transfer function of physical systems and determination of overall	
	transfer function using block diagram algebra and signal flow graphs.	
EE3103.2	Determine time response specifications of second order systems and absolute	
	and relative stability of lti systems using root locus method.	
EE3103.3	Determine time response specifications of second order systems and absolute	
	and relative stability of lti systems using routh's stability criterion.	
EE3103.4	Analyze the stability of lti systems using frequency response methods.	
EE3103.5	Design lag, lead, lag-lead compensators to improve system performance using	
	bode diagrams.	
EE3103.6	Represent physical systems as state models and determine the response.	
	Understand the concepts of controllability and observability.	

COURSE NAME: RENEWABLE ENERGY SOURCES		
COURSE (COURSE CODE: EE3104	
EE3104.1	Analyze solar radiation data, extra-terrestrial radiation, radiation on earth's	
	surface and solar energy storage.	
EE3104.2	Illustrate the components of wind energy systems.	
EE3104.3	Illustrate the working of biomass, digesters.	
EE3104.4	Illustrate the working of geothermal plants.	
EE3104.5	Demonstrate the principle of energy production from otec, tidal and waves.	
EE3104.6	Evaluate the concept and working of fuel cells & mhd power generation.	

(Approved by AICTE, & Affiliated to JNTUK, A.P.) KESANUPALLI (V), NARASARAOPETA-522549, AP

COURSE NAME: CONCEPTS OF CONTROL SYSTEMS (ELACTIVE)		
COURSE C	COURSE CODE: EE3105	
EE3105.1	Draw impedance diagram for a power system network and calculate per unit quantities.	
EE3105.2	Apply the load flow solution to a power system using different methods.	
EE3105.3	Form zbus for a power system networks and analyse the effect of symmetrical faults.	
EE3105.4	Find the sequence components.	
EE3105.5	Power system components and analyse its effects of unsymmetrical faults.	
EE3105.6	Analyse the stability concepts of a power system.	

COURSE NAME: CONTROL SYSTEMS LABORATORY		
COURSE (COURSE CODE: EE31L1	
EE31L1.1	Analyze the performance and working magnetic amplifier, d.c and a.c. servo motors and synchros.	
EE31L1.2	Design P,Pi,Pd And Pid Controllers.	
EE31L1.3	Design lag, lead and lag-lead compensators.	
EE31L1.4	Evaluate temperature control of an oven using pid controller.	
EE31L1.5	Determine the transfer function of d.c motor.	
EE31L1.6	Analyze the performance of d.c and a.c servo motor.	

COURSE N	COURSE NAME: POWER ELECTRONICS LABORATORY	
COURSE (COURSE CODE: EE31L2	
EE31L2.1	Analyse characteristics of various power electronic devices and design firing	
	circuits for scr.	
EE31L2.2	Analyse the performance of single–phase dual, three–phase full–wave bridge	
	converters and dual converter with both resistive and inductive loads.	
EE31L2.3	Examine the operation of single-phase ac voltage regulator.	
EE31L2.4	Cycloconverter with resistive and inductive loads.	
EE31L2.5	Differentiate the working and control of buck converter and boost converter.	
EE31L2.6	Differentiate the working & control of square wave inverter and pwm	
	inverter.	

(Approved by AICTE, & Affiliated to JNTUK, A.P.) KESANUPALLI (V), NARASARAOPETA-522549, AP

www.eswarcollege of eng g. org, email: eswarcollege of eng g@gmail.com

COURSE N	COURSE NAME: SOFT SKILL COURSE EMPLOYABILITY	
COURSE (COURSE CODE: EE31L3	
EE31L3.1	Follow strategies in minimizing time consumption in problem solving Apply	
	shortcut methods to solve proublems.	
EE31L3.2	Confidently solve any mathematical problems and utilize these mathematical	
	skills both in their professional as well as personal life.	
EE31L3.3	Analyze, summarize and present information in quantitative forms including	
	graphs and formulas.	
EE31L3.4	Analyze, summarize and present information in quantitative tables.	
EE31L3.5	Understand the core competencies to succeed in professional and personal	
	life.	
EE31L3.6	☐ Learn and demonstrate a set of practical skills such as time management,	
	self-management, handling conflicts, team leadership, etc.	

III YEAR-II SEM

COURSE N	COURSE NAME: MICROPROCESSORS AND MICROCONTROLLERS	
COURSE (COURSE CODE: EE3201	
EE3201.1	Know the concepts of the microprocessor capability in general and explore	
	the evaluation of microprocessors.	
EE3201.2	Analyse the instruction sets - addressing modes - minimum and maximum	
	modes operations of 8086 microprocessors.	
EE3201.3	Analyse the microcontroller and interfacing capability.	
EE3201.4	Describe the architecture and interfacing of 8051 controller.	
EE3201.5	Know the concepts of pic micro controller and its programming.	
EE3201.6	Analyse the addressing modes.	

COURSE NAME: ELECTRICAL MEASUREMENTS AND INSTRUMENTATION		
COURSE (COURSE CODE: EE3202	
EE3202.1	Know the construction and working of various types of analog instruments.	
EE3202.2	Describe the construction and working of wattmeter and power factor meters.	
EE3202.3	Know the construction various bridges for the measurement resistance -	
	inductance and capacitance.	
EE3202.4	Know the construction and working various bridges for the measurement	
	resistance - inductance and capacitance.	
EE3202.5	Know the operational concepts of various transducers.	
EE3202.6	Know the construction and operation digital meters.	

(Approved by AICTE, & Affiliated to JNTUK, A.P.) KESANUPALLI (V), NARASARAOPETA-522549, AP

COURSE N	COURSE NAME: POWER SYSTEM ANALYSIS	
COURSE (COURSE CODE: EE3203	
EE3203.1	Draw impedance diagram for a power system network and calculate per unit quantities.	
EE3203.2	Apply the load flow solution to a power system using different methods.	
EE3203.3	Form zbus for a power system networks and analyse the effect of symmetrical faults.	
EE3203.4	Find the sequence components.	
EE3203.5	Power system components and analyse its effects of unsymmetrical faults.	
EE3203.6	Analyse the stability concepts of a power system.	

COURSE NAME: SIGNALS AND SYSTEMS		
COURSE (COURSE CODE: EE3204	
EE3204.1	Apply the knowledge of various signals and operations.	
EE3204.2	Analyze the spectral characteristics of periodic signals using fourier analysis.	
EE3204.3	Classify the systems based on their properties.	
EE3204.4	Determine the response of lsi system using convolution.	
EE3204.5	Understand the process of sampling and the effects of under sampling.	
EE3204.6	Apply Laplace and z-transforms to analyze signals and systems (continuous	
	& discrete).	

COURSE NAME: SWITCHGEAR AND PROTECTION		
COURSE (COURSE CODE: EE3205	
EE3205.1	Illustrate the principles of arc interruption for application to high voltage	
	circuit breakers of air - oil - vacuum - sf6 gas type.	
EE3205.2	Analyse the working principle and operation of different types of	
	electromagnetic protective relays.	
EE3205.3	Acquire knowledge of protective schemes for generator and transformers for	
	different fault conditions.	
EE3205.4	Classify various types of protective schemes used for feeders.	
EE3205.5	Bus bar protection and types of static relays.	
EE3205.6	Analyse the operation of different types of over voltages protective schemes	
	required for insulation co-ordination and types of neutral grounding.	

(Approved by AICTE, & Affiliated to JNTUK, A.P.) KESANUPALLI (V), NARASARAOPETA-522549, AP

COURSE NAME: ELECTRICAL MEASUREMENTS AND INSRUMENTATION		
LABORAT	LABORATORY	
COURSE CODE: EE32L1		
EE32L1.1	Know about the phantom loading.	
EE32L1.2	Learn the calibration process.	
EE32L1.3	Measure the electrical parameters voltage - current - power - energy and	
	electrical characteristics of resistance - inductance and capacitance.	
EE32L1.4	Gain the skill knowledge of various brides and their applications.	
EE32L1.5	Learn the usage of ct's - pt's for measurement purpose.	
EE32L1.6	Know the characteristics of transducers.	

COURSE NAME: MICRO PROCESSORS AND MICRO CONTROLLERS LAB		
COURSE (COURSE CODE: EE32L2	
EE32L2.1	Write assembly language program using 8086 microprocessor based on	
	arithmetic - logical - number systems and shift operations.	
EE32L2.2	Write assembly language programs for numeric operations and array handling	
	problems.	
EE32L2.3	Write a assembly program on string operations.	
EE32L2.4	Interface 8086 with i/o and other devices.	
EE32L2.5	Do parallel and serial communication using 8051 & pic 18 micro controllers.	
EE32L2.6	Program microprocessors and microcontrollers for real world applications.	

COURSE N	COURSE NAME: POWER SYSTEMS AND SIMULATION LAB	
COURSE (COURSE CODE: EE32L3	
EE32L3.1	Estimate the sequence impedances of 3-phase transformer and alternators.	
EE32L3.2	Evaluate the performance of transmission lines.	
EE32L3.3	Analyse and simulate power flow methods in power systems.	
EE32L3.4	Analyse and simulate the performance of pi controller for load frequency	
	control.	
EE32L3.5	Analyse and simulate stability studies of power systems.	
EE32L3.6	Simulate the performance of pi controller.	

(Approved by AICTE, & Affiliated to JNTUK, A.P.) KESANUPALLI (V), NARASARAOPETA-522549, AP

www.eswarcollegeofengg.org, email:eswarcollegeofengg@gmail.com

IV YEAR-I SEM

COURSE NAME: SWITCHGEAR AND PROTECTION	
COURSE (CODE:EE4101
EE4101.1	Understand the principles of arc interruption for application to high voltage
	circuit breakers of air, oil, vacuum, sf6 gas type.
EE4101.2	Understand the working principle and operation of different types of
	electromagnetic protective relays.
EE4101.3	Students acquire knowledge of faults and protective schemes for high power
	generator and transformers.
EE4101.4	Improves the ability to understand various types of protective schemes used
	for feeders and bus bar protection.
EE4101.5	Understand different types of static relays and their applications.
EE4101.6	Understand different types of over voltages and protective schemes required
	for insulation co-ordination.

COURSE N	COURSE NAME: OOPS THROUGH JAVA	
COURSE (COURSE CODE: EE4102	
EE4102.1	Understand java programming concepts and utilize java graphical user	
	interface in program writing.	
EE4102.2	Write, compile, execute and troubleshoot java programming for networking	
	concepts.	
EE4102.3	Build java application for distributed environment.	
EE4102.4	Design and develop multi-tier applications.	
EE4102.5	Identify and analyze enterprise applications.	
EE4102.6	Java concepts use in graphical user interface.	

COURSE N	COURSE NAME: RENEWABLE ENERGY SYSTEMS	
COURSE (COURSE CODE: EE4103	
EE4103.1	Analyze solar radiation data, extraterrestrial radiation, and radiation on earth's surface.	
EE4103.2	Design solar thermal collectors, solar thermal plants.	
EE4103.3	Design solar photo voltaic systems.	
EE4103.4	Develop maximum power point techniques in solar pv and wind energy systems.	
EE4103.5	Explain wind energy conversion systems, wind generators, power generation.	
EE4103.6	Explain basic principle and working of hydro, tidal, biomass, fuel cell and geothermal systems.	

(Approved by AICTE, & Affiliated to JNTUK, A.P.) KESANUPALLI (V), NARASARAOPETA-522549, AP

COURSE NAME: UTILIZATION OF ELECTRICAL ENERGY	
COURSE CODE: EE4104	
	Know the various sources of electrical energy and its generation technologies
EE4104.1	for conventional and non-conventional energy sources.
EE4104.2	Know various types of illumination equipment.
EE4104.3	Illumination measurement and illumination techniques.
	Learn about various methods used for electrical energy based heating and
EE4104.4	welding applications.
	Know about the mechanisms, equipment and technology used in the electric
EE4104.5	traction.
	Understand the importance of electrical earthing, earthing equipment and
EE4104.6	electrical earthing measurement methods

COURSE NAME: HIGH VOLTAGE ENGINEERING		
COURSE CODE: EE4105		
EE4105.1	Acquire knowledge of principle of operation, working of differentelectronic	
EE4105.2	Select the instrument to be used based on the requirements.	
EE4105.3	Understand and analyze different signal generators and analyzers.	
EE4105.4	Understand the design of oscilloscopes for different applications.	
EE4105.5	Design different transducers for measurement of differentparameters	
EE4105.6	Learn and understand the use of various measuring techniques for measurement of different physical parameters using different classes of transducers	

COURSE NAME: Linear & Digital IC Applications Laboratory		
COURSE CODE: EE41L1		
EE41L1.1	Understand the characteristics of ics-741, 555, 565, 566.	
EE41L1.2	Apply the concepts of IC 741 for different applications.	
EE41L1.3	Analyse the data connection circuits.	
EE41L1.4	Develop the digital circuits.	
EE41L1.5	Model the counters & Registers using IC's.	
EE41L1.6	To model the digital circuits for different applications.	

(Approved by AICTE, & Affiliated to JNTUK, A.P.) KESANUPALLI (V), NARASARAOPETA-522549, AP

www.eswarcollegeofengg.org, email:eswarcollegeofengg@gmail.com

COURSE NAME: Power Systems & Simulation Laboratory		
COURSE CODE: EE41L2		
EE41L2.1	Determine the parameters of various power system components which are	
	frequently occur in power system studies.	
EE41L2.2	He can execute energy management systems functions at load dispatch center.	
EE41L2.3	To impart the practical knowledge of functioning of various power system	
	components	
EE41L2.4	Determination of various parameters .	
EE41L2.5	LFC and Economic dispatch.	
EE41L2.6	Simulation of load flows, transient stability.	

IV YEAR-II SEM

COURSE NAME: EMBEDDED SYSTEM		
COURSE CODE: EE4201		
EE4201.1	Understand the basic concepts of an embedded system.	
EE4201.2	Able to know an embedded system design approach to perform a specific function.	
EE4201.3	The hardware components required for an embedded system.	
EE4201.4	The design approach of an embedded hardware.	
EE4201.5	The various embedded firmware design approaches on embedded environment.	
EE4201.6	Understand how to integrate hardware and firmware of an embedded system using real time operating system.	

COURSE NAME: SPECIAL ELECTRICAL MACHINES		
COURSE CODE: EE4202		
EE4202.1	distinguish between brush dc motor and brush less dc motor. □	
EE4202.2	explain the performance and control of stepper motors, and their applications.	
EE4202.3	explain theory of operation and control of switched motor. □	
EE4202.4	explain theory of operation and control of reluctance motor.	
EE4202.5	explain the theory of travelling magnetic field and applications of linear	
	motors.	
EE4202.6	understand the significance of electrical motors for traction drives.	

(Approved by AICTE, & Affiliated to JNTUK, A.P.) KESANUPALLI (V), NARASARAOPETA-522549, AP

COURSE NAME: EMBEDDED SYSTEMS	
COURSE CODE: EE4203	
EE4203.1	distinguish between brush dc motor and brush less dc motor. □
EE4203.2	explain the performance and control of stepper motors, and their applications.
EE4203.3	explain theory of operation and control of switched motor. □
EE4203.4	explain theory of operation and control of reluctance motor.
EE4203.5	explain the theory of travelling magnetic field and applications of linear
	motors.
EE4203.6	understand the significance of electrical motors for traction drives.